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Summary

 

A detailed derivation of the equations governing the pressure in a generic liquid-fuel launch 
vehicle tank subjected to uniformly accelerated motion is presented. The equations obtained are 
then for the Space Shuttle Superlightweight Liquid-Oxygen Tank at approximately 70 seconds 
into flight. This generic derivation is applicable to any fuel tank in the form of a surface of 
revolution and should be useful in the design of future launch vehicles.

 

Introduction

 

An important consideration in the design of launch vehicles is the pressure exerted on the 
wall of a fuel tank during flight. For example, studies of the Space Shuttle Superlightweight 
Liquid-Oxygen (LO

 

2

 

) Tank shown in figure 1 have been presented that include the effects of the 
LO

 

2

 

 pressure on its nonlinear and buckling behavior under flight loads.

 

1, 2

 

 In these very complex 
studies, the LO

 

2

 

 pressure acting on the tank wall was approximated by using several simplifying 
presumptions that are based on the specific characteristics of the vehicle dynamics, at specific 
times in the flight trajectory. For example, stratification of the cryogenic fluid was neglected and 
the fluid was presumed to be homogeneous and, as a result, to have a uniform density. 
Additionally, fluid sloshing effects were neglected. The fluid was taken to be incompressible and 
inviscid, and flow effects were neglected. Moreover, every particle of fluid in the tank was 
presumed to be subjected to uniformly accelerated motion. 

The objective of this memorandum is to present a detailed derivation of the fomulas used in 
references 2 and 3 to simulate the the LO

 

2

 

 pressure field in the Space Shuttle Superlightweight 
Liquid-Oxygen Tank. Toward this objective, a generic presentation of the fundamental equations 
is given first, followed by an example problem that corresponds to approximately 70 seconds into 
flight, given in reference 1. This generic derivation is applicable to any fuel tank in the form of a 
surface of revolution and should be useful in the design of future launch vehicles.

 

Derivation

 

In the analysis presented subsequently, the fluid is presumed to be incompressible and 
inviscid, and to have a uniform density. The tank and the fluid are presumed to be moving together 
as a uniformly accelerated rigid body without sloshing, and the tank has an internal ullage 
pressure p

 

u

 

. For these presumptions, the pressure field, p

 

(x, y, z)

 

, is given by (see reference 3)  

                                                              (1)

In this equation, 

 

ρ

 

  is the density of the fluid,  is the acceleration vector,  is the body force 

associated with gravity, and  is the gradient operator for the 

 

(x, y, z)

 

 coordinate system fixed to 
the generic tank shown in figure 2. Associated with the 

 

(x, y, z)

 

 coordinates are the corresponding  

− ∇p + ρg = ρa

a ρg

∇



 

2

unit vectors .  It is convenient to express equation (1) as

                                                                 (2a)

where
                                                                 (2b)

is the net acceleration vector. 

To obtain the desired expression for the pressure field acting on the tank wall, it is convenient 
to first determine the magnitude and direction of net lateral acceleration, denoted by 

 

η

 

, as shown 
in figure 3. The magnitude of the net lateral acceleration is given by

                                                             (3)

and the corresponding direction is given by the unit vector

                                                      (4a)

where

                                                            (4b)

and

                                                             (4c)

Next, the coordinate system 

 

(x, 

 

η

 

, 

 

ζ)

 

 

 

is introduced, as shown in figure 3. The 

 

(0, 

 

η

 

, 

 

ζ)

 

 coordinates 
shown in this figure span the same plane as the 

 

(0, y, z)

 

 coordinates. With the 

 

(x, 

 

η

 

, 

 

ζ)

 

 coordinates, 
equation (1) is expressed in a simpler component form as

                                                           (5a)

                                                           (5b)

                                                              (5c)

From equation (5c), it follows that the functional dependence of the pressure field is given by

i, j, k

− ∇p = ρα

α = a − g

αη = αy
2 + α z

2

η = cosψ j + sinψ k

cosψ =
αy

αη

sinψ =
α z

αη

−
∂p
∂x

= ραx

−
∂p
∂η

= ραη

−
∂p
∂ζ

= 0
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                                                              (6)

On a surface of constant pressure, the pressure differential  dp  must obey

                                              (7)

Using equation (5c) with equation (7) yields

                                                               (8)

Substituting equations (5a) and (5b) into equation (8) yields

                                                               (9)

which is easily integrated to yield the equation of plane

                                                           (10)

where  C  is a constant. It is useful to point out that the net acceleration vector in the x-

 

η

 

 plane is 
given by

                                                       (11)

and its slope in this plane is  

 

α

 

x

 

/

 

α

 

η

 

, which is the negative reciprocal of the slope of the plane of 
constant pressure given by equation (10). Thus, the planes of constant pressure are perpendicular 
to the net acceleration vector in the x-

 

η

 

 plane. The angle of inclination, 

 

β

 

, of the lines of constant 
pressure is given by 

                                                           (12)

as seen in figure 4. By using equations (3) and (9), equation (12) becomes

                                                (13)

p = p x, η

dp = ∂p
∂x

dx + ∂p
∂η

dη + ∂p
∂ζ

dζ = 0

dx
dη = −

∂p
∂η
∂p
∂x

dx
dη = −

αη

αx

x +
αη

αx

η = C

α = αxi + αηη

tanβ = − dx
dη

tanβ =
αη

αx

=
αy

2 + α z
2

αx
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In addition, figure 4 indicates that
                                                          (14a)

and
                                                          (14b)

To obtain an expression for the pressure gradient that can be easily integrated, it is convenient 
to let  denote the coordinates of points in the plane perpendicular to the planes of constant 
pressure, as shown in the figure 4. For this coordinate system, equation (2a) is expressed simply as

                                                          (15)

Integrating this equation gives

                                                      (16)

where   is a constant. At the top of the fluid surface, , where

                                                 (17)

where equation (14a) has been used. At , the pressure field is equal to the ullage pressure 
p

 

u

 

, as depicted in figure 4. Therefore, equations (16) and (17) yield

                                            (18a)

for
                                                      (18b)

The coordinate  is expressed in terms of the 

 

(x, 

 

η

 

, 

 

ζ)

 

 coordinates by

                                      (19)

Substituting equation (19) into equations (18) gives

cosβ = αx

α

sinβ =
αη

α

x, η

−
dp
dx

= ρ α

p = − ρ α x + C

C x = xf

xf = xf cosβ = xf
αx

α

x = xf

p = pu + ρ α xf
αx

α
− x

x ≤ xf = xf
αx

α

x

x = cosβ x + sinβ η = αx

α
x +

αη

α
η
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                                            (20a)

for

                                                        (20b)

Next, the  

 

η

 

  coordinate is expressed as (see figure 3)

                                      (21)

where equations (4) have been used. Substituting equation (21) into equations (20) gives

                                    (22a)

for

                                               (22b)

For a tank in the form of a surface of revolution, the  y  and  z  coordinates of a point  

 

(x, y, z)

 

 
on the surface are expressed as

                                                        (23a)

                                                         (23b)

where  is the horizontal radius of the tank wall and  

 

θ

 

  is the polar angle, as shown in figure 
5. By using equations (23) with equations (22), the pressure field acting on the tank wall is given 
by

    for                                             (24a)

and
   for                              (24b)

where 

                                    (24c)

p = pu + ραx xf − x −
αη

αx

η

x +
αη

αx

η ≤ xf

η = cosψ y + sinψ z =
αy

αη

y +
α z

αη

z

p = pu + ραx xf − x −
αy

αx

y −
α z

αx

z

x +
αy

αx

y +
α z

αx

z ≤ xf

y = r x cosθ

z = r x sinθ

r x

p x, θ = pu x > xs x, θ

p x, θ = pu + ραx xs x, θ − x x ≤ xs x, θ

xs x, θ = xf − r x
αy

αx

cosθ +
α z

αx

sinθ
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Example Problem

 

Formulas similar to equations (24) were used in the structural analysis of the Space Shuttle 
Superlightweight External Tank (SLWT). In particular, an early booster ascent loading condition 
was examined in reference 1 that corresponds to approximately 70 seconds into flight and a LO

 

2

 

 
tank that is approximately seven-eighths full. At this instant of the trajectory, the acceleration field 
was approximated by a uniform field that is given in terms of the coordinates shown in figure 5 
by 

 

α

 

x

 

 = 2.011g, 

 

α

 

y

 

 = 0.049g, and 

 

α

 

z

 

 = 0.440g, where g is the magnitude of uniform gravitational 
acceleration. For this acceleration field, equations (3) and (4) give 

 

ψ

 

 = 83.65 degrees for the plane 
of the resultant lateral acceleration vector. Likewise, equation (13) gives  

 

β

 

 = 12.42 degrees for 
the inclination of the fluid surface, in the x-

 

η

 

 plane, shown in figure 4. These two angles are 
independent of the shape of the tank.

The SLWT LO

 

2

 

 tank, without its foam insulation, is shown in figure 6 and the corresponding 
geometry and dimensions of a corresponding idealized wall reference surface are shown in figure 
7. The major tank-wall components consists of a forward ogive, an aft ogive, a cylindrical barrel 
section, and an aft dome. The aft dome consists of a truncated elliptical dome section with a 
spherical cap. Each of these tank elements has a circular cross section. 

Determination of the pressure acting on tank wall requires an expression for the horizontal 
radius r

 

(x)

 

, appearing in equation (24b), for each tank component. The geometry of the ogive 
section, consisting of the forward and aft ogives, is shown in figure 8. The ogive is formed by 
rotating a segment of an eccentric circle about the x-axis. This tangent line of the segment at            
x = h

 

2

 

 is parallel to the x-axis.  Inspection of this figure reveals

                                                            (25a)

and
                                                     (25b)

From equation (25a) it follows that

                                                   (26)

Substituting equation (26) into equation (25b) gives the desired expression

    for                            (27)

For a given value of  r

 

1

 

  shown in figure 7, the height  h

 

1

 

 is found from equation (27) as

                                                (28)

x = h 2 + R sinφ

r x = R cosφ − 1 + r2

cosφ = 1
R R2

− x − h 2

2

r x = R2
− x − h 2

2
+ r2 − R h 2 ≤ x ≤ h 1 + h 2

h 1 = r2 − r1 2R − r2 + r1
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For the barrel section, inspection of figure 7 gives

    for                                                  (29)

The corresponding expression for the truncated elliptical section of the aft dome is obtained 
directly by using the equation for an ellipse in  x-r  coordinates along with the geometry given in 
figure 7. The result is

    for                             (30)

Likewise, the expression for the spherical part of the aft dome is obtained by using the equation 
for a circle whose origin is at  r = 0  and  x = R

 

s

 

 - h

 

3

 

 - h

 

4

 

, where R

 

s

 

  is the radius of the spherical 
cap shown in figure 7. From this equation, it follows that

    for                       (31a)

where

                                                            (31b)

A "to scale" graphical image based on equations (27)-(31) is shown in figure 9. For this image, a 
value of   r

 

1

 

 = 0  was used to obtain the sharp point at the nose of the tank. The corresponding value 
of  h

 

1

 

 given by equation (28) is  418.5 in.

The approximate pressure distribution on the interior surface of the LO

 

2

 

 tank is given by 
equations (24), where x is the axial coordinate shown in figure 7 and r

 

(x)

 

 is given by equations 
(27)-(31). The fill level for this example is given by  x = x

 

f

 

 = 305.9 in., and the density  

 

ρ

 

  is given 
by  

 

ρ

 

g = 

 

γ

 

, where 

 

γ

 

 = 0.04123 lb/in

 

3

 

  is the specific weight of the LO

 

2

 

. The ullage pressure for this 
example is  p

 

u

 

 = 19.6 psi and the corresponding tank dimensions are given in figure 7. Pressure 
calculations were made for these specific values and for a closed, pointed ogive with  r

 

1

 

 = 0, and 
are shown in figures 10 and 11. The results in figure 10 show the variation of the pressure acting 
on the shell wall as a function of the polar angle 

 

θ

 

. Five curves are shown in the figure that 
correspond to different axial positions along the tank. The straight line shown for  x = 500 in. is 
in the unfilled region of the ogive where the pressure is equal to the 19.6 psi ullage pressure, and 
is independent of  

 

θ

 

. The curves shown for  x = 250, 100, and 0 in. correspond to a location in the 
ogive below the fluid surface, a location within the barrel section, and the location where the 
barrel and aft dome meet, respectively. The sinusoidal shape of these curves corresponds to the 
inclination of the fluid surface caused by the uniformly accelerated motion. The straight line 
shown for  x = -114 in. is almost at bottom of the aft dome, where the variations of the pressure 
with 

 

θ 

 

 are negligible.

r x = r2 0 ≤ x ≤ h 2

r x = r2 1 − x
h 3

2

1 − r3

r2

2

− h 3 ≤ x ≤ 0

r x = Rs

2
− x − Rs + h 3 + h 4

2

− h 3 + h 4 ≤ x ≤ − h 3

Rs = r3
2 + h 4

2

2h 4
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The results in figure 11 show the variation of the pressure acting on the shell wall as a 
function of the axial coordinate x. Two curves are shown in this figure that correspond to                  

 

θ

 

 = 83.65 and 263.65 degrees. These two tank meridians span the plane of maximum lateral 
acceleration. The differences in the two curves are also associated with the inclination of the fluid 
surface. The two curve intersect at x = -114.9 in., the center of the aft dome, where a maximum 
pressure equal to 54.5 psi occurs.

 

Concluding Remarks

 

A detailed derivation of the equations governing the pressure in a generic liquid-fuel launch 
vehicle tank subjected to uniformly accelerated motion has been presented. The equations 
obtained have been applied to detemine the pressure acting on the shell wall of the Space Shuttle 
Superlightweight Liquid-Oxygen Tank at approximately 70 seconds into flight. This generic 
derivation is applicable to any fuel tank in the form of a surface of revolution and should be useful 
in the design of future launch vehicles.
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Figure 6.  Space Shuttle Superlightweight Liquid-Oxygen Tank.
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Figure 9.  Graphical output of equations (27)-(31) for the Space Shuttle Superlightweight
Liquid-Oxygen Tank with the dimensions given in figure 7, except r1 = 0. 

x

LO2

r

Angle, θθθθ, degrees

Pressure,
p, psi

x = -114.9 in.

x = 522.1 in.

x = 103.6 in.

x = 305.9 in.

x = 500 in.

x = -114 in.

x = 0 in.

x = 100 in.

x = 250 in.

 Ullage pressure, pu = 19.6 psi

Figure 10.  Pressure acting on the shell wall of the Space Shuttle Superlightweight
Liquid-Oxygen Tank as a function of the polar angle θ (see figure 5).   
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